January 2017, I flew to Orlando to attend Rstudio::conf as my first R conference. I was lucky to have been granted a spot in the “Intermediate Shiny” workshop with Joe Cheng. Not only had I learned more about Shiny, but also about the structure of such intensive workshops and the way of teaching. I was observing these details closely, and I had a clear thought then; I would teach one of these workshops one day, whether in this conference or in other contexts.
[Read More]
A Journey into a Team's Workflows
or how to navigate chaos and bring order to data projects!
“I thought my code was clear and organized, but I figured out it was not!", that’s how a data analyst told me after a couple of sessions I held to examine the workflows of different team members and discuss their practices. I like to help people reach this realization to see the value of improving their workflows to them as well as to others with whom they collaborate. And when I say workflows I mean how to organize a project?
[Read More]
From H2O to POJO Models
Getting started with a minimal example
A while ago, I was experimenting with h2o and wanted to generate a Plain Old Java Object (POJO) model. I found the documentation useful but I decided to write a post with a simple example for future reference.
In this post, we will see how to:
build a simple h2o model in R. convert the model to POJO. create a main program in Java to use the POJO model.
[Read More]
Teaching Shiny Workshop at SatRday Johannesburg
Eating the cake first and playing games!
This month three SatRdays took place on the same day around the world. I was invited to one of them, SatRday Johannesburg, to give a training and a talk at. I was excited about it because it was my first #rstats event in Africa and I wanted to contribute to events in the region where few conferences are held relative to Europe or the US. The workshop I gave was about Building Web Applications in Shiny.
[Read More]
Intro to Text Classification with Keras (Part 3 - CNN and RNN Layers)
In part 1 and part 2 of this series of posts on Text Classification in Keras we got a step by step intro about:
processing text in Keras. embedding vectors as a way of representing words. defining a sequential models from scratch. Since we are working with a real dataset from the Toxic Comment Classification Challenge on Kaggle, we can always see how our models would score on the leaderboard if we competed with the final submissions.
[Read More]
Divergent Bars in ggplot2
Step by step guide
A couple of days ago I was asked by one of the participants I met at the workshop I gave in DataFest Tbilisi about a simple tutorial on plotting divergent bars in ggplot2 and other bar chart stuff. I was going to write a gist with explanation but I decided to write this post instead to share with others whenever they ask during/after a workshop or in other occasions.
[Read More]
Intro to Text Classification with Keras (Part 2 - Multi-Label Classification)
In the previous post, we had an overview about text pre-processing in keras. In this post we will use a real dataset from the Toxic Comment Classification Challenge on Kaggle which solves a multi-label classification problem.
In this competition, it was required to build a model that’s “capable of detecting different types of toxicity like threats, obscenity, insults, and identity-based hate”. The dataset includes thousands of comments from Wikipedia’s talk page edits and each comment can have more than one tag.
[Read More]
Intro to Text Classification with Keras (Part 1)
pre-processing, embeddings and more
Keras provides a simple and flexible API to build and experiment with neural networks. I used it in both python and R, but I decided to write this post in R since there are less examples and tutorials. This series of posts will focus on text classification using keras.
The introductory post will show a minimal example to explain:
text pre-processing in keras.
how and why to use embeddings.
[Read More]
R-Ladies at DataFest Tbilisi
In November 2018, I attended DataFest Tbilisi 2018 as I was invited by R-Ladies Tbilisi to give a talk, a workshop and mentor participants in a Datathon. It was a great opportunity and I would particularly highlight the second and third day were we had R-Ladies Room for R lovers with a series of workshops and a Datathon organized and led by R-Ladies who were the main representatives of the R community there.
[Read More]
Handling R errors the rlang way
Custom conditions, subclasses and more!
Every day we deal with errors, warnings and messages while writing, debugging or reviewing code. The three types belong to conditions in R. You might hope to see as few of them as possible, but actually they are so helpful when they describe the problem concisely and refer to its source. So if you write functions or code for yourself or others, it is a good practice to spend more time in writing descriptive conditions.
[Read More]